Fun Fast Fourier Transforms and FORTRAN

Stephen Huenneke

April 20, 2007
Fast Fourier Transforms and Fun with FORTRAN

- What is a Fourier Transform?
Fast Fourier Transforms and Fun with FORTRAN

- What is a Fourier Transform?
- Discretizing the Fourier Transform
Fast Fourier Transforms and Fun with FORTRAN

- What is a Fourier Transform?
- Discretizing the Fourier Transform
- Direct Method
 - Easily Implemented
 - Poor Performance
Fast Fourier Transforms and Fun with FORTRAN

- What is a Fourier Transform?
- Discretizing the Fourier Transform
- Direct Method
 - Easily Implemented
 - Poor Performance
- Cooley-Tukey
 - History
 - Divide and Conquer
 - Significant Gains
Fast Fourier Transforms and Fun with FORTRAN

- What is a Fourier Transform?
- Discretizing the Fourier Transform
- Direct Method
 - Easily Implemented
 - Poor Performance
- Cooley-Tukey
 - History
 - Divide and Conquer
 - Significant Gains
- Gorey FORTRAN Details
Fast Fourier Transforms and Fun with FORTRAN

- What is a Fourier Transform?
- Discretizing the Fourier Transform
- Direct Method
 - Easily Implemented
 - Poor Performance
- Cooley-Tukey
 - History
 - Divide and Conquer
 - Significant Gains
- Gorey FORTRAN Details
- Conclusion
Fun Fast Fourier Transforms and FORTRAN

What is the Fourier Transform?
Discretizing the Fourier Transform
Direct Method
Cooley-Tukey Algorithm
Conclusion

Clean Signal

Un corrupted Signal combination

time (milliseconds)

Stephen Huenneke
Clean Signal

Single-Sided Amplitude Spectrum of y(t)
What is the Fourier Transform?
Discretizing the Fourier Transform
Direct Method
Cooley-Tukey Algorithm
Conclusion

Noisy Signal

Signal with Some Random Noise

Stephen Huenneke
Noisy Signal

Single-Sided Amplitude Spectrum of y(t)

Frequency (Hz)

[Graph showing the amplitude spectrum of a noisy signal]
Discretizing the Fourier Transform

\[F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx \]
Discretizing the Fourier Transform

- \(F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} \, dx \)

- By sampling at points at regular intervals of \(\tau \) we can construct a new discrete sum:
 \[
 D(\omega) = \sum_{r=0}^{n-1} f(r\tau) e^{-i\omega r\tau}
 \]
Discretizing the Fourier Transform

- \(F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} \, dx \)

- By sampling at points at regular intervals of \(\tau \) we can construct a new discrete sum:
 \[
 D(\omega) = \sum_{r=0}^{n-1} f(r\tau) e^{-i\omega r\tau}
 \]

- Observe that we introduced periodicity by discretizing the transform that doesn’t exist in the integral form. This produces recycled data outside of the range of \(n \) values.
Applications Become Evident

• What can we use this new DFT for?
Applications Become Evident

• What can we use this new DFT for?
• Quality Assurance, Cable TV, Communications
Applications Become Evident

- What can we use this new DFT for?
- Quality Assurance, Cable TV, Communications
- Analysis of high noise signals.
What is the Fourier Transform?

Discretizing the Fourier Transform

Direct Method

Cooley-Tukey Algorithm

Conclusion

Direct Algorithms

\[D(\omega) = \sum_{r=0}^{n-1} f(r\tau)e^{-i\omega r\tau} \]

- Very simple algorithm
Direct Algorithms

\[D(\omega) = \sum_{r=0}^{n-1} f(r\tau) e^{-i\omega r\tau} \]

- Very simple algorithm
- Quickly, simply implemented in several lines of code.
Direct Algorithms

\[D(\omega) = \sum_{r=0}^{n-1} f(r\tau)e^{-i\omega r\tau} \]

- Very simple algorithm
- Quickly, simply implemented in several lines of code.
- Performs acceptably for small samples.
Direct Algorithms

- Brute force approach consumes resources
Direct Algorithms

- Brute force approach consumes resources
- Precalculated, saved values can speed up somewhat.
Direct Algorithms

- Brute force approach consumes resources
- Precalculated, saved values can speed up somewhat.
- Direct implementations of the transform are always bounded at n^2 running time.
Cooley-Tukey Algorithm

- James Cooley worked with Richard Garwin and John Tukey to devise a way to reduce the number of computations in a transform.
Cooley-Tukey Algorithm

• James Cooley worked with Richard Garwin and John Tukey to devise a way to reduce the number of computations in a transform.

• While not the first to discover the properties of the FFT, Cooley’s work is some of the widest applied in industry.
Cooley-Tukey Algorithm

- James Cooley worked with Richard Garwin and John Tukey to devise a way to reduce the number of computations in a transform.
- While not the first to discover the properties of the FFT, Cooley’s work is some of the widest applied in industry.
- By picking a highly composite sample size, we can reduce the computational complexity to $N \log N$ time.
Cooley-Tukey Algorithm

Radix-2

- We split the DFT into even and odd indexed elements. Then perform smaller DFT’s on those sums.
Cooley-Tukey Algorithm

Radix-2

- We split the DFT into even and odd indexed elements. Then perform smaller DFT’s on those sums.
- Now we can exploit the periodicity introduced in the original discretization process.
Cooley-Tukey Algorithm
Radix-2

- We split the DFT into even and odd indexed elements. Then perform smaller DFT’s on those sums.
- Now we can exploit the periodicity introduced in the original discretization process.
- Applying iteratively, we can continue to reduce the size of the computations.
Cooley-Tukey Algorithm
Radix-2

- Compared to hand-calcutions and other computer programs available in the mid-60’s this was between 100,000 and 800,000 times faster that previous algorithms.
Cooley-Tukey Algorithm
Radix-2

- Compared to hand-calculations and other computer programs available in the mid-60’s this was between 100,000 and 800,000 times faster than previous algorithms.
- Can be implemented fairly simply in a chip.
Cooley-Tukey Algorithm
Radix-2

- Compared to hand-calculations and other computer programs available in the mid-60’s this was between 100,000 and 800,000 times faster than previous algorithms.
- Can be implemented fairly simply in a chip.
- Real-time applications become practical.
Conclusion

- References
 - J. Cooley, ‘How the FFT Gained Acceptance’
 - M. Cartwright, ‘Fourier Methods’

My website: http://www.cs.umb.edu/* *shuenne/
Conclusion

• References
 • J. Cooley, ‘How the FFT Gained Acceptance’
 • M. Cartwright, ’Fourier Methods’
 • L. Ludeman, ‘Fundamentals of Digital Signal Processing’

• Thank Yous
 • Professor Steven Jackson
 • UMass Boston Math and Computer Science Faculty
 • Siena College

My website: http://www.cs.umb.edu/* *shuenne/